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Background: ‘Descending Toward the Moon’, Chesley Bonestell, 1951



• Almost any landed lunar mission will be an active volatile release experiment. 
ú Well-recognized during the Apollo era (e.g., Milford & Pomilla, 1967, Aronowitz et al., 1968, Chang, 1969), and 

worth revisiting (e.g., Hurley et al., 2014, Shipley et al., 2014).
ú Models are critical to interpreting observations from orbit and the surface.

• Why does this matter?

ú Solar system science: How do volatiles interact with the surfaces of airless bodies? Key to interpreting the lunar 
polar volatile record, understanding the behavior of surface boundary exospheres.

ú Mission planning: How do spacecraft alter the lunar environment? How should we account for this when planning 
surface operations and measurements?

ú Resource characterization: On what timescales is polar water renewed?

• Motivating questions:

ú How does the lunar exosphere respond to a powered landing?
ú How sensitive are observables to gas-surface interaction parameters?

The Once and Future Exosphere
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• Specify nozzle exit diameter (0.6 m), thrust (2500 N), combustion chamber 
conditions (Lee, 2017), exit Mach number (5). H2O ~33% of exhaust.

• Simulated molecules generated within a virtual source region using an 
analytical expression for density (Roberts, 1966); velocity and temperature 
from isentropic flow relations. ~43 kg H2O released over 155s.

• Descent trajectory based on Chang’e 3 (Liu et al., 2014).
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To Make An Exosphere From Scratch

mean free path 
here is ~1 m
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To Make An Exosphere From Scratch

mean free path 
here is ~1 m

intermolecular collisions 
modeled through the Direct 

Simulation Monte Carlo 
(DSMC) method (Bird, 1994)

thermal 
escape

diurnally varying 
surface temperature

cold-trap capture

temperature-dependent 
surface residence time

ballistic motion 
between collisions

photolysis

(Sun)

• Specify nozzle exit diameter (0.6 m), thrust (2500 N), combustion chamber 
conditions (Lee, 2017), exit Mach number (5). H2O ~33% of exhaust.

• Simulated molecules generated within a virtual source region using an 
analytical expression for density (Roberts, 1966); velocity and temperature 
from isentropic flow relations. ~43 kg H2O released over 155s.

• Descent trajectory based on Chang’e 3 (Liu et al., 2014).



A Nominal Descent

• 70° S, 7 am lunar local time (Tsurf ~200 K).

• Surface interaction parameters:

ú Sticking coefficient = 1.0.
ú Desorption activation energy = 0.7 eV 

(≈ 67.5 kJ/mol).
ú 100% thermalization.

• Things to think about:

ú Scale of area affected.
ú Enhancement in exospheric density.
ú Surface adsorption.
ú Mean free path vs. scales of interest.
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• 70° S, 7 am lunar local time (Tsurf ~200 K).

• Surface interaction parameters:
ú Sticking coefficient = 1.0.
ú Desorption activation energy = 0.7 eV

(≈ 67.5 kJ/mol).
ú 100% thermalization.

• Things to think about:
ú Scale of area affected.
ú Enhancement in exospheric density.
ú Surface adsorption.
ú Mean free path vs. scales of interest.
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Deducing Surface Interaction Parameters from Observations

Exospheric density (#/m3) in the descent plane

descent trajectory

Ea = 0.5 eV
(tres ~0.4 s)

Ea = 0.7 eV
(tres ~12 hours)

• Consider the same landing scenario, varying only 
desorption activation energy, Ea (0.5 eV vs. 0.7 eV); 
mean surface residence time, tres = (1/n)exp(Ea/kBTsurf)

• This affects the balance between adsorbed and 
migrating water vapor.
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Deducing Surface Interaction Parameters from Observations

• Consider the same landing scenario, varying only 
desorption activation energy, Ea (0.5 eV vs. 0.7 eV); 
mean surface residence time, tres = (1/n)exp(Ea/kBTsurf)

• This affects the balance between adsorbed and 
migrating water vapor.

• For perspective:

� Recent LAMP observations suggest the presence of 
migrating H2O, at <1% monolayer surface coverage
(Hendrix et al., 2019).
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Deducing Surface Interaction Parameters from Observations

• Consider the same landing scenario, varying only 
desorption activation energy, Ea (0.5 eV vs. 0.7 eV); 
mean surface residence time, tres = (1/n)exp(Ea/kBTsurf)

• This affects the balance between adsorbed and 
migrating water vapor.

• For perspective:

� Recent LAMP observations suggest the presence of 
migrating H2O, at <1% monolayer surface coverage
(Hendrix et al., 2019).

� Elemental column densities detected by LAMP 30 – 60 s 
after LCROSS ranged from 109 to 1013 #/cm2 (Gladstone 
et al., 2010).

after 155 s of pow
ered descent 

altitude 1.8 km
 to 50 m

 | lateral traverse ~1.8 km

descent trajectory

Ea = 0.5 eV
tres ~0.4 s

Column density (#/cm2) of exospheric molecules

Ea = 0.7 eV
(tres ~12 hours)



Exospheric Science at Lander Scale
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Sunrise over Schrödinger basin, Ernie Wright/NASA's Scientific Visualization Studio 

• Lunar surface temperature can vary 
dramatically over a range of scales*
particularly at high solar incidence 
angles (dawn and high latitudes).

• How significant a role does this play 
in exospheric science at the lander 
and rover scale?

approximate size of 
scenes in previous slides

Lunar Atmospheric 
Composition Experiment 
(LACE)

Schmitt/AS17-134-20499

Surface and Exosphere 
Alterations by Landers 

(SEAL)

Benna et al., 2019

Molecules travel a few hundred km in a few hundred seconds through 
ballistic hops. (For perspective, Schrödinger basin is ~300 km wide.)

*e.g., Bandfield et al., 2015,
Rubanenko & Aharonson, 2017



Close Encounters of the Second Kind
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• Spacecraft exhaust propagation is a case study in how the systems that we build may (typically temporarily) 
alter their operational environments – with implications for exploration and science.

(inspired by conversations with
Edward L. Patrick, SwRI)

from the Final Report for Cold Cathode 
Gauge Experiment (Johnson et al., 1974)
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• Spacecraft exhaust propagation is a case study in how the systems that we build may (typically temporarily) 
alter their operational environments – with implications for exploration and science.

(inspired by conversations with
Edward L. Patrick, SwRI)

Apollo 16 S-IVB stage impact crater. 
[LROC NAC]

(Benna et al., 2019)

100 m

from the Final Report for Cold Cathode 
Gauge Experiment (Johnson et al., 1974) another sort of meteoroid?
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• Spacecraft exhaust propagation is a case study in how the systems that we build may (typically temporarily) 
alter their operational environments – with implications for exploration and science.

(inspired by conversations with
Edward L. Patrick, SwRI)

Apollo 16 S-IVB stage impact crater. 
[LROC NAC]

another sort of meteoroid?

(Benna et al., 2019)

100 m

from the Final Report for Cold Cathode 
Gauge Experiment (Johnson et al., 1974)

Lunar soils, nitrogen content vs. maturity
(Gibson & Andrawes, 1978)

70011 (collected beneath 
lunar module)



Modeling Long-Term Volatile Transport and Loss
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• Previous work (e.g., Prem et al, 2018) indicates that a quasi-
steady exosphere should be established within 1-2 lunar days.

• Rate of exospheric decay is sensitive to surface interaction 
parameters (including desorption activation energy).

• Diurnal variability in flux to surface.

Top: Percentage of initial mass photodestroyed, trapped at south and north 
polar cold traps, lost to thermal escape, adsorbed and aloft vs. time.

Bottom: south/north polar cold-trapping rate coefficients (for comparison, 
photodestruction rate coefficient is ~1.2E-05 s-1).

rough surface
smooth surface
(Ea ~0.46 eV)

from Prem et al, 2018
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• Previous work (Prem et al, 2018) indicates that a quasi-steady 
exosphere should be established within 1-2 lunar days.

• Rate of exospheric decay is sensitive to surface interaction 
parameters (including desorption activation energy).

• Diurnal variability in flux to surface.

• Work in progress: modeling the transition to quasi-steady state 
of a spacecraft-generated exosphere. 

Top: Percentage of initial mass photodestroyed, trapped at south and north 
polar cold traps, lost to thermal escape, adsorbed and aloft vs. time.

Bottom: south/north polar cold-trapping rate coefficients (for comparison, 
photodestruction rate coefficient is ~1.2E-05 s-1).

rough surface
smooth surface
(Ea ~0.46 eV)

from Prem et al, 2018

(https://xkcd-excuse.com/)
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Summary and Conclusions

• Almost any landed lunar mission will be an active volatile release experiment. 

• In the immediate aftermath of a nominal descent that releases water vapor as an exhaust gas, the surficial 
and exospheric distribution of water is quantifiably sensitive to gas-surface interaction parameters.

• During a nominal descent, regions > 10 km from the landing site may be exposed to exhaust gases.

• Priorities from a modeling perspective:
� How long does it take for exhaust gases to be globally dispersed?
� How much water migrates to polar cold traps, and how is it distributed?
� How sensitive is the exospheric response to landing latitude?

• Understanding how spacecraft alter the lunar environment, and sustained observations of the lunar 
exosphere could play key roles in both science and exploration.


